【英文原版、带书签】钢结构和复合结构中的节点设计 Eurocode 3 钢结构设计,第 1-8 部分 - 节点设计,Eurocode 4 复合钢和混凝土结构设计,第 1-1 部分 - 通用规则和建造规则

附件大小:15.02MB
附件格式:1个直链文件,格式为pdf
所属分类:图书手册
分享会员:
分享时间:
最后更新:
资源简介/截图:

Design of joints in steel and composite structures Eurocode 3 design of steel structures, part 1-8-Design of joints, Eurocode 4 design of composite steel and concrete structures, part 1-1-General rules and rules for build

Eurocode 3,Eurocode 4,复合钢和混凝土结构设计,第 1-1 部分,第 1-8 部分,节点设计,通用规则和建造规则,钢结构和复合结构中的节点设计,钢结构设计,【英文原版、带书签】钢结构和复合结构中的节点设计 Eurocode 3 钢结构设计,第 1-8 部分 - 节点设计,Eurocode 4 复合钢和混凝土结构设计,第 1-1 部分 - 通用规则和建造规则

ECCS 欧洲规范设计手册
ECCS 编委
路易斯·西蒙斯·达席尔瓦 (ECCS)
安东尼奥·拉马斯(葡萄牙)
让-皮埃尔·贾斯帕特(比利时)
Reidar Bjorhovde(美国)
乌尔里克·库尔曼(德国)
钢结构设计-2P版
Luis Simoes da Silva、Rui Simoes 和 Helena Gervasio
钢结构防火设计-2NP版
让-马克·弗兰森和保罗·维拉·雷亚尔
电镀结构设计
达科·贝格、乌尔里克·库尔曼、劳伦斯·达文和本杰明·布劳恩
钢和复合结构的疲劳设计
阿兰·努斯鲍默、路易斯·博尔赫斯和劳伦斯·达文
冷弯型钢结构设计
Dan Dubina、Viorel Ungureanu 和 Rafaelle Landolfo
钢结构和复合结构的接头设计
让-皮埃尔·贾斯帕特和克劳斯·韦南
地震地区建筑物的钢结构设计
Raffaele Landolfo、Federico Mazzolani、Dan Dubina、Luis Simdes da Silva 和 马里奥·德安妮洛

PDF书签目录:

Half-Title Page 1
Series Page 2
Title Page 3
Copyright Page 4
TABLE OF CONTENTS 5
FOREWORD 12
PREFACE 13
LIST OF SYMBOLS AND ABBREVIATIONS 16
SYMBOLS 16
ABBREVIATIONS 19
Chapter 1: INTRODUCTION 20
1.1 GENERAL 20
1.1.1 Aims of the book 20
1.1.1.1 The traditional common way in which joints are modelled for the design of a frame 21
1.1.1.2 The semi-continuous approach 21
1.1.1.3 The merits of the semi-continuous approach 24
1.1.1.4 A parallel between member cross sections and joints 26
1.1.2 Brief description of the contents of the book 29
1.1.3 Types of structural systems and joints covered 30
1.1.4 Basis of design 31
1.2 DEFINITIONS 31
1.2.1 Joint properties 33
1.2.2 Sources of joint deformability 34
1.2.2.1 Beam-to-column joints 35
1.2.2.1.1 Major axis joints 35
1.2.2.1.2 Minor axis joints 38
1.2.2.1.3 Joints with beams on both major and minor column axes 39
1.2.3 Beam splices and column splices 39
1.2.4 Beam-to-beam joints 40
1.2.5 Column bases 41
1.2.6 Composite joints 42
1.2.7 Hollow section joints 43
1.3 MATERIAL CHOICE 45
1.4 FABRICATION AND ERECTION 47
1.5 COSTS 48
1.6 DESIGN APPROACHES 48
1.6.1 Application of the "static approach" 48
1.6.2 Component approach 50
1.6.2.1 General 50
1.6.2.2 Introduction to the component method 51
1.6.3 Hybrid connection aspects 57
1.7 DESIGN TOOLS 58
1.7.1 Types of design tools 58
1.7.2 Examples of design tools 59
1.8 WORKED EXAMPLES 63
Chapter 2: STRUCTURAL ANALYSIS AND DESIGN 66
2.1 INTRODUCTION 66
2.1.1 Elastic or plastic analysis and verification process 67
2.1.2 First order or second order analysis 68
2.1.3 Integration of joint response into the frame analysis and design process 70
2.2 JOINT MODELLING 70
2.2.1 General 70
2.2.2 Modelling and sources of joint deformability 73
2.2.3 Simplified modelling according to Eurocode 3 73
2.2.4 Concentration of the joint deformability 74
2.2.4.1 Major axis beam-to-column joint configurations 74
2.2.4.2 Minor axis beam-to-column joint configurations and beam-to-beam configurations 79
2.3 JOINT IDEALISATION 79
2.3.1 Elastic idealisation for an elastic analysis 80
2.3.2 Rigid-plastic idealisation for a rigid-plastic analysis 81
2.3.3 Non-linear idealisation for an elastic-plastic analysis 82
2.4 JOINT CLASSIFICATION 82
2.4.1 General 82
2.4.2 Classification based on mechanical joint properties 82
2.5 DUCTILITY CLASSES 85
2.5.1 General concept 85
2.5.2 Requirements for classes of joints 88
Chapter 3: CONNECTIONS WITH MECHANICAL FASTENERS 89
3.1 MECHANICAL FASTENERS 89
3.2 CATEGORIES OF CONNECTIONS 91
3.2.1 Shear connections 91
3.2.2 Tension connections 93
3.3 POSITIONING OF BOLT HOLES 94
3.4 DESIGN OF THE BASIC COMPONENTS 96
3.4.1 Bolts in shear 96
3.4.2 Bolts in tension 98
3.4.3 Bolts in shear and tension 98
3.4.4 Preloaded bolts 99
3.4.5 Plates in bearing 107
3.4.6 Block tearing 108
3.4.7 Injection bolts 109
3.4.8 Pins 110
3.4.9 Blind bolting 113
3.4.9.1 Flow drill blind bolting 113
3.4.9.2 SHS Blind bolting connections 115
3.4.10 Nails 115
3.4.11 Eccentricity of angles 116
3.5 DESIGN OF CONNECTIONS 118
3.5.1 Bolted lap joints 118
3.5.1.1 Introduction 118
3.5.1.2 Joints with non-preloaded bolts 119
3.5.1.3 Joints with preloaded bolts 122
3.5.2 Bolted T-stubs 123
3.5.2.1 Generalities 123
3.5.2.2 Design resistance 124
3.5.2.3 Influence of the actual bolt dimensions on the design resistance 129
3.5.2.4 Influence of the bolt/anchor length 131
3.5.2.5 Direct applications to flange plate connections 132
3.5.2.5.1 RHS flange-plate connections in tension 132
3.5.2.5.2 CHS flange-plate connections in tension 134
3.5.3 Gusset plates 135
3.5.4 Long joints 139
Chapter 4: WELDED CONNECTIONS 141
4.1 TYPE OF WELDS 141
4.1.1 Butt welds 141
4.1.2 Fillet welds 142
4.1.3 Fillet welds all round 144
4.1.4 Plug welds 144
4.2 CONSTRUCTIVE CONSTRAINTS 145
4.2.1 Mechanical properties of materials 145
4.2.1.1 Parent material 145
4.2.1.2 Welding consumables 145
4.2.2 Welding processes, preparation of welds and weld quality 146
4.2.3 Geometry and dimensions of welds 150
4.2.3.1 Fillet welds 150
4.2.3.2 Intermittent fillet welds 150
4.2.3.3 Fillet all round 151
4.2.3.4 Butt welds 152
4.2.3.5 Plug welds 152
4.2.3.6 Welding in cold-formed zones 152
4.3 DESIGN OF WELDS 153
4.3.1 Generalities 153
4.3.2 Fillet welds 154
4.3.2.1 Effective length 154
4.3.2.2 Effective throat thickness 154
4.3.2.3 Design resistance 155
4.3.2.3.1 Directional method 155
4.3.2.3.2 Simplified method 157
4.3.3 Fillet welds all round 158
4.3.4 Butt welds 158
4.3.5 Plug welds 160
4.3.6 Concept of full strength fillet weld 160
4.4 DISTRIBUTION OF FORCES IN A WELDED JOINT 163
4.4.1 Generalities 163
4.4.2 Particular situations 165
4.4.2.1 Long lap joints with side fillet welds 165
4.4.2.2 Welds to unstiffened flanges 166
4.4.2.3 Intermittent welds 168
4.4.2.4 Eccentrically loaded single fillet or single-sided partial penetration butt welds 168
4.4.2.5 Angles connected by one leg 169
4.4.2.6 Gusset plates 169
Chapter 5: SIMPLE JOINTS 170
5.1 INTRODUCTION 170
5.2 STEEL JOINTS 172
5.2.1 Introduction 172
5.2.2 Scope and field of application 173
5.2.2.1 Types of structure 173
5.2.2.2 Types of connected elements 173
5.2.2.3 Types of loading 174
5.2.2.4 Types of fasteners 174
5.2.2.5 Types of connections 174
5.2.2.6 Reference code 176
5.2.3 Joint modelling for frame analysis and design requirements 176
5.2.3.1 General 176
5.2.3.2 Simple joint modelling 177
5.2.3.3 Summary of design requirements 179
5.2.4 Practical ways to satisfy the ductility and rotation requirements 179
5.2.4.1 Header plate connection 179
5.2.4.1.1 Design requirements for sufficient rotation capacity 179
5.2.4.1.2 Design requirements for sufficient joint ductility 181
5.2.4.2 Fin plate connection 184
5.2.4.2.1 Design requirements for sufficient rotation capacity 184
5.2.4.2.2 Design requirements for sufficient joint ductility 186
5.2.4.3 Web cleat connection 188
5.2.5 Design rules for joint characterisation 191
5.2.5.1 Connections with a header plate 191
5.2.5.1.1 Notations 191
5.2.5.1.2 Requirements to ensure the safety of the approach 191
5.2.5.1.3 Resistance to shear forces 192
5.2.5.2 Connections with a fin plate 196
5.2.5.2.1 Notations 196
5.2.5.2.2 Requirements to ensure sufficient rotation capacity 196
5.2.5.2.3 Requirements to avoid premature weld failure 197
5.2.5.2.4 Resistance to shear forces 197
5.2.5.2.5 Requirements to permit a plastic redistribution of internal forces 203
5.3 COMPOSITE JOINTS 204
5.3.1 Composite joints for simple framing 204
5.4 COLUMN BASES 206
5.4.1 Introduction 206
5.4.2 Basis for the evaluation of the design resistance 207
5.4.3 Resistance to axial forces 208
5.4.3.1 Component “base plate and concrete block in compression? 208
5.4.3.2 Component “base plate in bending and anchor bolts in tension? 213
5.4.3.3 Assembly of components for resistance evaluation 216
5.4.4 Resistance to shear forces 217
Chapter 6: MOMENT RESISTANT JOINTS 221
6.1 INTRODUCTION 221
6.2 COMPONENT CHARACTERISATION 222
6.2.1 Column web panel in shear in steel or composite joints 222
6.2.2 Column web in transverse compression in steel or composite joints 224
6.2.3 Column web in transverse tension 228
6.2.4 Column flange in transverse bending 229
6.2.5 End-plate in bending 234
6.2.6 Flange cleat in bending 237
6.2.7 Beam or column flange and web in compression 239
6.2.8 Beam web in tension 241
6.2.9 Plate in tension or compression 242
6.2.10 Bolts in tension 243
6.2.11 Bolts in shear 244
6.2.12 Bolts in bearing on beam flange, column flange, end-plate or cleat 245
6.2.13 Concrete in compression including grout 246
6.2.14 Base plate in bending under compression 246
6.2.15 Base plate in bending under tension 246
6.2.16 Anchor bolts in tension 247
6.2.17 Anchor bolts in shear 248
6.2.18 Anchor bolts in bearing 248
6.2.19 Welds 248
6.2.20 Haunched beam 248
6.2.21 Longitudinal steel reinforcement in tension 249
6.2.22 Steel contact plate in compression 250
6.3 ASSEMBLY FOR RESISTANCE 251
6.3.1 Joints under bending moments 251
6.3.2 Joints under axial forces 259
6.3.3 Joints under bending moments and axial forces 260
6.3.3.1 Introduction 260
6.3.3.2 Brief description of the advanced analytical procedure for steel joints 261
6.3.4 M-N-V 267
6.3.5 Design of welds 268
6.3.5.1 Definition of the weld section 268
6.3.5.2 Position of the neutral axis and calculation of the axial stresses 269
6.3.5.3 Design requirements according to the analysis and verification structural design process 271
6.4 ASSEMBLY FOR ROTATIONAL STIFFNESS 273
6.4.1 Joints under bending moments 273
6.4.1.1 Refined method 273
6.4.1.2 Simple prediction of the initial stiffness 278
6.4.2 Joints under bending moments and axial forces 282
6.5 ASSEMBLY FOR DUCTILITY 284
6.5.1 Steel bolted joints 285
6.5.2 Steel welded joints 287
6.6 APPLICATION TO STEEL BEAM-TO-COLUMN JOINT CONFIGURATIONS 288
6.6.1 Extended scope 288
6.6.2 Possible design simplifications for endplate connections 291
6.6.2.1 Design moment resistance 291
6.6.2.2 Initial stiffness 292
6.6.3 Worked example 293
6.6.3.1 General data 293
6.6.3.2 Determination of the component properties 294
6.6.3.3 Determination of the design moment resistance 313
6.6.3.4 Determination of the rotational stiffness 313
6.6.3.5 Computation of the resistance in shear 315
6.7 APPLICATION TO STEEL COLUMN SPLICES 316
6.7.1 Common splice configurations 316
6.7.2 Design considerations 318
6.8 APPLICATION TO COLUMN BASES 319
6.8.1 Common column basis configurations 319
6.8.2 Design considerations 322
6.8.2.1 Proportional and non-proportional loading 322
6.8.2.2 General procedure for the derivation of the design properties of column bases with base plates 323
6.8.2.3 Simplified procedure for the derivation of the design properties of column bases with base plates 325
6.9 APPLICATION TO COMPOSITE JOINTS 330
6.9.1 Generalities 330
6.9.2 Design properties 334
6.9.2.1 Resistance and rotational stiffness 334
6.9.2.2 Rotational ductility 334
6.9.3 Assembly procedure under M and N 336
6.9.3.1 Introduction 336
6.9.3.2 Studied composite joint configuration 336
6.9.3.3 Computation of the M-N resistance interaction curve 340
6.9.3.3.1 Introduction 340
6.9.3.3.2 Upper rows in tension Fi Rd,+ 341
6.9.3.3.3 Lower rows in tension Fi Rd,? 342
6.9.3.3.4 Obtained M-N resistance interaction curves 343
Chapter 7: LATTICE GIRDER JOINTS 345
7.1 GENERAL 345
7.2 SCOPE AND FIELD OF APPLICATION 346
7.3 DESIGN MODELS 349
7.3.1 General 349
7.3.2 Failure modes 350
7.3.3 Models for CHS chords 351
7.3.4 Model for RHS chords 352
7.3.5 Punching shear failure 354
7.3.6 Model for brace failure 355
7.3.7 M-N interaction 355
Chapter 8: JOINTS UNDER VARIOUS LOADING SITUATIONS 357
8.1 INTRODUCTION 357
8.2 COMPOSITE JOINTS UNDER SAGGING MOMENT 358
8.3 JOINTS IN FIRE 359
8.4 JOINTS UNDER CYCLIC LOADING 360
8.5 JOINTS UNDER EXCEPTIONAL EVENTS 362
Chapter 9: DESIGN STRATEGIES 364
9.1 DESIGN OPPORTUNITIES FOR OPTIMISATION OF JOINTS AND FRAMES 364
9.1.1 Introduction 364
9.1.2 Traditional design approach 367
9.1.3 Consistent design approach 370
9.1.4 Intermediate design approaches 372
9.1.5 Economic considerations 373
9.1.5.1 Savings of fabrication and erection costs 373
9.1.5.2 Savings of material costs 377
9.1.5.3 Summary and conclusions 377
9.2 APPLICATION PROCEDURES 379
9.2.1 Guidelines for design methodology 379
9.2.2 Use of a good guess for joint stiffness 380
9.2.3 Required joint stiffness 381
9.2.4 Use of the fixity factor concept traditional design approach 384
9.2.5 Design of non-sway frames with rigid-plastic global frame analysis 385
BIBLIOGRAPHIC REFERENCES 390
Annex A: Practical Values for Required Rotation Capacity 399
Annex B: Values for Lateral Torsional Buckling Strength of a Fin Plate 400

资源链接请先登录(扫码可直接登录、免注册)
十二年老网站,真实资源!
高速直链,非网盘分享!浏览器直接下载、拒绝套路!
本站已在工信部及公安备案,真实可信!
手机扫码一键登录、无需填写资料及验证,支持QQ/微信/微博(建议QQ,支持手机快捷登录)
①升级会员方法:一键登录后->用户中心(右上角)->升级会员菜单
②注册登录、单独下载/升级会员、下载失败处理等任何问题,请加客服微信
不会操作?点此查看“会员注册登录方法”

投稿会员:设计院精神小伙儿
我的头像天天加班赶图~~~设计院是弱势群体好不好!请叫我设计狗

报歉!评论已关闭.

手机扫码、免注册、直接登录

 注意:QQ登录支持手机端浏览器一键登录及扫码登录
微信仅支持手机扫码一键登录

账号密码登录(仅适用于原老用户)